\qquad

C.U.SHAH UNIVERSITY

 Summer Examination-2016
Subject Name : Linear Algebra-I

Subject Code : 4SCO3MTC2

Branch :B.SC (Mathematics)

Semester : 3
Date : 26/04/2016
Time : 2:30 To 5:30
Marks :70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:

a) True/false: Direct sum of two subspace is also subspace .
b) What are the standard basis of R^{2} ?
c) Are $(1,2,5)$ and $(-5,-10,-25)$ linearly dependent ?
d) What is inner product of $(2,-2,7)$ and $(0.5,-0.5,0)$.
e) Find norm of $(1,-5,0.2)$.
f) True/false: Every subspace is a vector space.
g) Define span of $\{u, v\}$.
h) Write dimension of M_{33}.
i) What is dimension of $\mathrm{C}[0,1]$?
j) Find the angle between ($1,2,0,5$) and ($-2,1,5,0$) .
k) True/false: Every inner product space is norm linear space.
l) Find the angle between (1, 2, 0) and (-2, 1,5$)$.
m) Define :Rank of linear transformation.
n) True/false: M_{n} is a vector space.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Which of the following are subspace of V .
(1) $W=(x, y, z) / x \geq 0\} \quad V=R 3$.
(2) $\mathrm{W}=(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}+\mathrm{y}=0\} \quad \mathrm{V}=\mathrm{R} 3$.
(3) $\mathrm{W}=(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x} \mathrm{z} \leq 0\} \quad \mathrm{V}=\mathrm{R} 3$.
(4) $\mathrm{W}=(\mathrm{x}, \mathrm{y}, \mathrm{z}) / \mathrm{x}-\mathrm{y}+2 \mathrm{z}=0\} \quad \mathrm{V}=\mathrm{R} 3$.
b) Define vector space and show that M22 is a vector space .

Attempt all questions
Q-3
a) Fix $x 0 \in X$.Let $S=\{f: X \rightarrow R / f(x 0)=0\}$. Then Show that S is vector subspace of
$F(X, R)$.

b) State and prove rank -nullity theorem.

Q-8 Attempt all questions

a) If V is vector space and $\mathrm{W}_{1}, \mathrm{~W}_{2}$ are two subspace of V then show that
$\mathrm{W}_{1} \cap \mathrm{~W}_{2}$ and $\mathrm{W}_{1}+\mathrm{W}_{2}$ are also subspace of V .
b) If V be inner product space .if we define $\mathrm{d}(\mathrm{x}, \mathrm{y})=\|x-y\|$, then show that d is a metric on V.
c) What is Euclidian norm?

