C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name : Linear Algebra-I

Subject Code : 4SC03MTC2	Branch : B.SC (Mathematics)

Semester :3	Date : 26/04/2016	Time : 2:30 To 5:30	Marks :70
T			

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

0-1		Attempt the following questions:	(14)
C	a)	True/false: Direct sum of two subspace is also subspace.	(1)
	b)	What are the standard basis of R^2 ?	(1)
	c)	Are (1,2,5) and (-5,-10,-25) linearly dependent?	(1)
	d)	What is inner product of (2,-2,7) and (0.5, -0.5, 0).	(1)
	e)	Find norm of (1,-5,0.2).	(1)
	f)	True/false: Every subspace is a vector space.	(1)
	g)	Define span of $\{u,v\}$.	(1)
	h)	Write dimension of M_{33}	(1)
	i)	What is dimension of C[0,1]?	(1)
	j)	Find the angle between $(1, 2, 0, 5)$ and $(-2, 1, 5, 0)$.	(1)
	k)	True/false: Every inner product space is norm linear space.	(1)
	l)	Find the angle between $(1, 2, 0)$ and $(-2, 1, 5)$.	(1)
	m)	Define :Rank of linear transformation.	(1)
	n)	True/false: M_{nn} is a vector space.	(1)

Attempt any four questions from Q-2 to Q-8

Q-2Attempt all questions(14)a) Which of the following are subspace of V.
(1) W=(x, y, z) / x ≥ 0 } V=R3.
(2) W=(x, y, z) / x +y = 0 } V=R3.
(3) W=(x, y, z) / x z ≤ 0 } V=R3.
(4) W=(x, y, z) / x -y + 2z = 0 } V=R3.(6)b) Define vector space and show that M22 is a vector space.
Attempt all questions(14)

a) Fix $x0 \in X$.Let $S = \{ f: X \rightarrow R / f(x0) = 0 \}$.Then Show that S is vector subspace of F(X,R).

Page 1 || 2

(6)

0-4	b)	State and prove rank -nullity theorem. Attempt all questions	(8) (1 4)
Υ'۲	a)	Check which of the following are L.T.?	(6)
	,	(1) T: R2 \rightarrow R3 , T(x, y) = (x, y, x + y)	
		(2) T: R3 \rightarrow R4 , T(x,y,z)=(x + y, y + z, z - y, x-y)	
	b)	Check whether $(1,2,4) \in \text{span A}$	(6)
		Where A={ $(0,1,-1),(0,0,2),(1,3,0)$ }.	
o -	C)	Define inner product space.	(2)
Q-5	a)	Attempt all questions	(14)
	a)	$\{ (1,2,1), (-1,3,0), (5,-2,9) \}$	(0)
	b)	Prove that x is orthogonal to y if and only if $ x + y ^2 = x ^2 + y ^2$	(4)
	c)	Examine the sub set of $C[0,2\pi]$ are L.D. or L.I.	(4)
	-	$\{-\sin x, -\cos x, e^x\}$	
Q-6		Attempt all questions	(14)
	a)	Define subspace of vector space. let V is vector space $W \subset V$.then show that W	(8)
	1.)	is subspace of V if and only if $\alpha u + \beta v \in W$ for all α , $\beta \in R$ and $u, v \in W$.	
	D)	State and prove Cauchy- Swarz inequality.	(0)
Q-7		Attempt all questions	(14)
Q-7	a)	Attempt all questions Verify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that	(14) (6)
Q-7	a)	Attempt all questions Verify rank nullity theorem for T:R ⁴ \rightarrow R ² such that T(x ₁ ,x ₂ ,x ₃ ,x ₄)=(x ₁ -x ₂ +x ₃ -x ₄ , 2x ₁ +x ₂ +3x ₃ +x ₄)	(14) (6)
Q-7	a) b)	Attempt all questions Verify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V, prove that	(14) (6) (6)
Q-7	a) b)	Attempt all questions Verify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$	(14)(6)(6)
Q-7	a) b) c)	Attempt all questions Verify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2).$ Define inner product in C[0,1] also justify it.	 (14) (6) (6) (2)
Q-7	a) b) c)	Attempt all questions Verify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$. Define inner product in C[0,1] also justify it.	 (14) (6) (6) (2)
Q-7 Q-8	a) b) c)	Attempt all questionsVerify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W1 and W2 be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.Define inner product in C[0,1] also justify it.Attempt all questions	 (14) (6) (6) (2) (14)
Q-7 Q-8	a) b) c) a)	Attempt all questionsVerify rank nullity theorem for $T: \mathbb{R}^4 \rightarrow \mathbb{R}^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W1 and W2 be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.Define inner product in C[0,1] also justify it.Attempt all questionsIf V is vector space and W1, W2 are two subspace of V then show that	 (14) (6) (6) (2) (14) (6)
Q-7 Q-8	a) b) c) a)	Attempt all questions Verify rank nullity theorem for $T:R^4 \rightarrow R^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that dim(W ₁ + W ₂)= dimW ₁ +dim W ₂ -dim(W ₁ \cap W ₂). Define inner product in C[0,1] also justify it. Attempt all questions If V is vector space and W ₁ , W ₂ are two subspace of V then show that $W_1 \cap W_2$ and $W_1 + W_2$ are also subspace of V.	 (14) (6) (6) (14) (6)
Q-7 Q-8	 a) b) c) a) b) 	Attempt all questions Verify rank nullity theorem for $T:R^4 \rightarrow R^2$ such that $T(x_1,x_2,x_3,x_4)=(x_1-x_2+x_3-x_4, 2x_1+x_2+3x_3+x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that dim(W ₁ + W ₂)= dimW ₁ +dim W ₂ -dim(W ₁ \cap W ₂). Define inner product in C[0,1] also justify it. Attempt all questions If V is vector space and W ₁ , W ₂ are two subspace of V then show that $W_1 \cap W_2$ and $W_1 + W_2$ are also subspace of V. If V be inner product space .if we define d(x,y) = $ x - y $, then show that d is a	 (14) (6) (6) (14) (6) (6)
Q-7 Q-8	 a) b) c) a) b) 	Attempt all questionsVerify rank nullity theorem for $T: R^4 \rightarrow R^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W1 and W2 be subspaces of V. prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2)$.Define inner product in C[0,1] also justify it.Attempt all questionsIf V is vector space and W_1 , W_2 are two subspace of V then show that $W_1 \cap W_2$ and $W_1 + W_2$ are also subspace of V.If V be inner product space .if we define $d(x,y) = x - y $, then show that d is a metric on V.	 (14) (6) (2) (14) (6) (6)
Q-7 Q-8	 a) b) c) a) b) c) 	Attempt all questions Verify rank nullity theorem for $T: R^4 \rightarrow R^2$ such that $T(x_1, x_2, x_3, x_4) = (x_1 - x_2 + x_3 - x_4, 2x_1 + x_2 + 3x_3 + x_4)$ Let V be a vector space and W ₁ and W ₂ be subspaces of V. prove that dim(W ₁ + W ₂)= dimW ₁ +dim W ₂ -dim(W ₁ \cap W ₂). Define inner product in C[0,1] also justify it. Attempt all questions If V is vector space and W ₁ , W ₂ are two subspace of V then show that $W_1 \cap W_2$ and $W_1 + W_2$ are also subspace of V. If V be inner product space .if we define d(x,y) = $ x - y $, then show that d is a metric on V. What is Euclidian norm ?	 (14) (6) (2) (14) (6) (6) (6) (2)

Page 2 || 2

